Answer: During a chemical reaction, matter cannot be created nor destroyed, matter can change form through physical and chemical changes, but through any of these changes, matter is conserved; even though the matter may change from one form to another, the same number of atoms exists before and after the change takes place.
Explanation: <3
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer:
Ok Hold up. I will answer after I think of question
Explanation:
<span>This is not the case in the hydrocarbon tail. The electronegativity of hydrogen and carbon are very similar, so the electron cloud is distributed evenly over the two atoms. Carbon-hydrogen bonds are said to be non-polar because they do not have positive and negative poles within themselves. Hope this helps. </span>