Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F =
let's calculate
F = 4/100 600
F = 24 N
Answer:
the focal length of the mirror is :
Explanation:
Use the formula for the formation of image using a divergent mirror and recalling that the image (s') that this mirror formed is virtual, so it is entered as a negative number in the formula. Use the object position (s) as 10, the image position (s') as -2, and derive the value of the focal length:
Answer:
a = 2.84 m/s²
Explanation:
Given that,
Net force, F = 2500 N
Mass of the car, m = 880 kg
We need to find the acceleration of the car. Net force is given by :
F = ma
So, the acceleration of the car is 2.84 m/s².