The lamp transfers electric energy into both light and thermal energy when it turns on
Answer:
The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
Explanation:
The chew toy is at equilibrium and experimenting three forces from three distinct dogs. The Free Body Diagram depicting the system is attached below. By Newton's Laws we construct the following equations of equilibrium: (<em>Sp</em> is for Spot, <em>F</em> is for Fido and <em>St</em> is for Steinberg) All forces and angles are measured in newtons and sexagesimal degrees, respectively:
(1)
(2)
If we know that
,
and
, then the components of the force done by Steinberg on the chewing toy is:





The magnitud of the force is determined by Pythagorean Theorem:



Since the direction of this force is in the 3rd Quadrant on Cartesian plane, we determine the direction of the force with respect to the eastern semiaxis:


The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
The level and type of impairment determine the severity and location of the injury.
Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a