Answer: A medium in which speed of light is more is known as optically rarer medium and a medium in which speed of light is less is said to be optically denser medium. For example in air and water, air is raer and water is a denser medium.
Explanation:
False, you pass a light through a mixture If the light bounces off the particles, you will see the light shine through and you have a colloid mixture
Answer:
1. 8437500 N
2. The force between the two charges is attractive.
Explanation:
1. Determination of the force between the two charges.
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
Distance apart (r) = 80 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 2 × 3 / 80²
F = 5.4×10¹⁰ / 6400
F = 8437500 N
Thus, the force of attraction between the two charges is 8437500 N
2. From the question given, the charges are:
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
We understood that like charges repels while unlike charges attract. Since the two charges (i.e –2 C and 3 C) has opposite signs, it means they will attract each other.
Thus the force between them is attractive.
Answer:
Thomson's atomic model was successful in explaining the overall neutrality of the atom. However, its propositions were not consistent with the results of later experiments. In 1906, J. J. Thomson was awarded the Nobel Prize in physics for his theories and experiments on electricity conduction by gases.
Summary. J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."