Actually Welcome to the Concept of the Astrophysics.
Let's categorize them eventually ==>
1.) Earth ==> 1.) travels around the Sun
2.) takes 365.25 days .
2.) Moon ===> 1.) travels around the Earth
2.) Takes 27.3 days.
1) in periodic acid (HIO₄), iodine has oxidation number +7, hydrogen has oxidation number +1, oxygen has -2, compound has neutral charge:
+1 + x + 4 · (-2) = 0.
x = +7.
2) in molecule of iodine (I₂), iodine has oxidation number 0, because iodine is nonpolar molecule.
3) in sodium iodide (NaI), iodine has oxidation number -1, sodium has oxidation number +1:
+1 + x = 0.
x = -1.
4) in iodic acid (HIO₃), iodine has oxidation number +5, hydrogen has oxidation number +1, oxygen has -2, compound has neutral charge:
+1 + x + 3 · (-2) = 0.
x = +5.
Answer:
237.2 mL.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
(XMV) acid = (XMV) base.
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HCl = (XMV) NaOH.</em>
<em></em>
For HCl; X = 1, M = 0.5 M, V = ??? mL.
For NaOH, X = 1, M = 1.54 M, V = 77.0 mL.
<em>∴ V of HCl = (XMV) NaOH / (XV) HCl = (</em>1)(1.54 M)(77.0 mL) / (1)(0.5 M) = <em>237.2 mL.</em>
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>