Answer:
0.877 mol
Step-by-step explanation:
We can use the<em> Ideal Gas Law </em>to solve this problem.
pV = nRT Divide both sides by RT
n = (pV)/(RT)
Data:
p = 646 torr
V = 25.0 L
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = 22.0 °C
Calculations:
(a) <em>Convert the pressure to atmospheres
</em>
p = 646 torr × (1 atm/760 torr) = 0.8500 atm
(b) <em>Convert the temperature to kelvins
</em>
T = (22.0 + 273.15) K = 295.15 K
(c) <em>Calculate the number of moles
</em>
n = (0.8500 × 25.0)/(0.082 06 × 295.15)
= 0.877 mol
Answer:
1. <u>No, you cannot calculate the solubility of X in water at 26ºC.</u>
Explanation:
You cannot calculate the solubility of X in <em>water at 26 degrees Celsius </em>because you do not know whether the solution formed by dissolving the crystals in 3.00 liters of water is saturaed or not.
The only way to determine the solubility of the compound X is by dissolving the crystals in certain (measured) amount of water and making sure that some crystals remain undissolved, as a solid on the bottom of the beaker.
Next, you should filter the solution to remove the undissolved crystals. Then, weigh the solution, evaporate, wash, dry, and weigh the crystals.
Then you have the mass of the crystals dissolved and the mass of the solution which will let you calculate the mass of pure water, and then the solubility.
They are totally different the Inner core is solid and hotter is made of iron, the outer core is liquid the and is made of iron and nickel
Answer:
Option A - High frequency, short wavelength.
Explanation:
<em>If the sound is high then the frequency is also high but short-wavelength means lots of waves that always have a high pitch-sound and a high frequency. </em>
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
<h3>What is the equilibrium constant?</h3>
In a reaction, we can judge using the value of the equilibrium constant weather or not the reaction moves on to completion. If the reaction moves up to completion, it the follows that the value of the equilibrium constant ought to be large.
On the other hand, when we have a case that the equilibrium constant is small and is not so large, then the reaction does not proceed essentially to completion.
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1