The chemical formula : 3HgBr₂(Mercury(II) bromide)
<h3>Further explanation</h3>
Given
The chemical formulas of Mercury and Bromine
Required
The appropriate chemical formula
Solution
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of molecules is determined by the coefficient in front of the compound
the number of atoms is determined by the subscript after the atom and the coefficient
Three molecules⇒ coefficient = 3
one atom of Mercury ⇒Hg
two atoms of Bromine ⇒ Br₂
The chemical formula : 3HgBr₂
35°c is equal to 95°f
To do this multiply 35 and 1.8
35 x 1.8=63
Now add 32
Resulting in the answer 95
(The equation for to solve for c and f is c1.8+32=f
Answer:
C.
Explanation:
This is a reaction of elimination, because the water was removed and because of it double bond is formed.
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)