Answer:
The equilibrium pressure of NO2 is 0.084 atm
Explanation:
Step 1: Data given
A reaction mixture initially contains 0.86 atm NO and 0.86 atm SO3.
Kp = 0.0118
Step 2: The balanced equation
NO( g) + SO3( g) ⇌ NO2( g) + SO2( g)
Step 3: The initial pressures
p(NO) = 0.86 atm
p(SO3) = 0.86 atm
p(NO2) = 0 atm
p(SO2) = 0 atm
Step 4: The pressure at the equilibrium
For 1 mol NO we need 1 mol SO3 to produce 1 mol NO2 and 1 mol SO2
p(NO) = 0.86 -x atm
p(SO3) = 0.86 -xatm
p(NO2) = x atm
p(SO2) = x atm
Step 5: Define Kp
Kp = ((pNO2)*(pSO2)) / ((pNO)*(pSO3))
Kp = 0.0118 = x²/(0.86 - x)²
X = 0.08427
p(NO) = 0.86 -0.08427 = 0.77573 atm
p(SO3) = 0.86 -0.08427 = 0.77573 atm
p(NO2) = 0.08427 atm
p(SO2) = 0.08427 atm
The equilibrium pressure of NO2 is 0.08427 atm ≈ 0.084 atm
Answer:
~1.417M
Explanation:
Molarity=(number of moles of solute)/(litres of solution)
In this case, we need to find moles of potassium bromide.
Mass=25.3g
Molar mass= 119g/mol
moles=(mass/molar mass)
=(25.3)/(119)
=0.2126moles of potassium bromide
Molarity=(0.2126)/(150/1000)
~1.417M
Hope this helps:)
Explanation:
Method of prepration of sodium thiosulphate - definition
In the laboratory, this salt can be prepared by heating an aqueous solution of sodium sulphite with sulphur or by boiling aqueous NaOH and sulfur according to this equation:

In the presence of an emulsifying agent, a mixture of oil and water becomes a colloidal dispersion.
Colloidal dispersion <span><span>otherwise </span>colloid</span><span> is </span><span>a system, in which discrete particles, droplets or bubbles of a dispersed phase (in this case oil), whose size at least in one dimension is in the range from 1 to 1000 nm are distributed in the other, usually continuous phase - dispersion medium (in this case water) differing from the dispersed phase in composition or state of aggregation.</span>
Since there is so little information given, I will assume that we are at STP and i can use the conversion factor at STP--->> 22.4 Liters= 1 mol of gas
before we use this conversion, we need to convert the grams to moles using the molar mass of the molecule.
molar mass of Cl₂= 35.5 x 2= 71.0 g/ mol
177.3 g (1 mol/ 71.0 g)= 2.50 mol Cl₂
then we use the conversion to get the volume
2.50 mol Cl₂ (22.4 Liters/ 1 mol)= 55.9 Liters