Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
a. The speed of the pendulum when it reaches the bottom is 0.9 m/s.
b. The height reached by the pendulum is 0.038 m.
c. When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
<h3>Kinetic energy of the pendulum when it reaches bottom</h3>
K.E = 100%P.E - 18%P.E
where;
K.E(bottom) = 0.82P.E
K.E(bottom) = 0.82(mgh)
K.E(bottom) = 0.82(1 x 9.8 x 0.05) = 0.402 J
<h3>Speed of the pendulum</h3>
K.E = ¹/₂mv²
2K.E = mv²
v² = (2K.E)/m
v² = (2 x 0.402)/1
v² = 0.804
v = √0.804
v = 0.9 m/s
<h3>Final potential energy </h3>
P.E = 100%K.E - 7%K.E
P.E = 93%K.E
P.E = 0.93(0.402 J)
P.E = 0.374 J
<h3>Height reached by the pendulum</h3>
P.E = mgh
h = P.E/mg
h = (0.374)/(1 x 9.8)
h = 0.038 m
<h3>when the pendulum stops</h3>
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Thus, the speed of the pendulum when it reaches the bottom is 0.9 m/s.
The height reached by the pendulum is 0.038 m.
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Learn more about pendulum here: brainly.com/question/26449711
#SPJ1
<span>Know your goals.
Prioritize wisely.
Important and urgent — Tasks that must be done. ...
Just say no.
Plan ahead. ...
Eliminate distractions.
Delegate more often.
Watch what you spend.
<span>Take care of yourself.</span></span>
The kinetic energy of the bullet is 20.4 kJ.
<u>Explanation:</u>
Kinetic energy of a bullet will be equal to the product of mass of the bullet with the square of velocity or speed of the bullet and then the half of that product value.
But here the mass of the bullet is not given, instead the weight of the bullet is given in terms of force. So from this, we have to first find the mass of the bullet.
We know that as per Newton's second law of motion, force is directly proportional to the product of mass and acceleration. So here the acceleration will be equal to the acceleration due to gravity as it is weight of the object.
So F = mg
0.10 N = m × 9.8
So ,the mass of the bullet is 0.0102 kg.
Now, we know the mass and velocity of the bullet is given as 2000 m/s.
So,
kinetic energy =
× m × v²
kinetic energy = 0.5 × 0.0102 × 2000 × 2000 = 20.4 kJ
Thus, the kinetic energy of the bullet is 20.4 kJ.