J.J. Thomson discovered the electron by noticing that a beam of particles could be influenced by an electric or magnetic force.. That is option B.
<h3>What is an electron?</h3>
An electron can be defined as the part of an atom that is negatively charged and is found revolving round the nucleus of an atom.
J.J. Thomson was the scientist that discovered electrons through subjecting two oppositely-charged electric plates around the cathode ray.
He noticed that the particles where deflected by both the magnetic and electric fields.
Learn more about cathode rays here:
brainly.com/question/4441361
#SPJ1
Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Answer:
You wouldnt fall you would be sucked and you would lose all air supply and you lungs would pop
Explanation:
Answer:
The Mass of a person is calculated to be 28.6kg .
Explanation:
This is based on Kinetic energy and we know, that Kinetic energy is the energy possessed by body by virtue of its motion .
It can be calculated by expression :
K.E=1/2mv²
Velocity of a person = 11.2m/sec
Kinetic energy = 1800J
Mass of person = ?
We know ,
K.E=1/2mv²
so, putting values we have :
1800=1/2 x m x (11.2)²
That is ,
m=1800 x 2 /11.2 x 11.2
or
m=3600/125.44
m = 28.6 kg