Explanation:
Upon dissolution of KCl heat is generated and temperature of the solution raises.
Therefore, heat generated by dissolving 0.25 moles of KCl will be as follows.

= 4.31 kJ
or, = 4310 J (as 1 kJ = 1000 J)
Mass of solution will be the sum of mass of water and mass of KCl.
Mass of Solution = mass of water + (no. of moles of KCl × molar mass)
= 200 g + 
= 200 g + 13.625 g
= 213.625 g
Relation between heat, mass and change in temperature is as follows.
Q = 
where, C = specific heat of water = 
Therefore, putting the given values into the above formula as follows.
Q = 
4310 J =
Thus, we can conclude that rise in temperature will be
.
Answer:
tetrahedral geometry
<h3>CHCH2O- CH2CH3</h3>
Explanation:
There are several centers of interest. Each carbon with all single bonds is the center of a tetrahedral geometry.
Answer: Bacterial species where observed Typical number on cell Distribution on cell surface
Escherichia coli (common pili or Type 1 fimbriae) 100-200 uniform
Neisseria gonorrhoeae 100-200 uniform
Streptococcus pyogenes (fimbriae plus the M-protein) ? uniform
Pseudomonas aeruginosa 10-20 polar
Explanation:
Pili are structures that extend from the surface of some bacterial cells.
These are hollow, non-helical, filamentous appendages.
Hope it helps you
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.