Answer:
Any Alkali Earth Metal - Group 2A aka Group 16 or polyatomic cation with a 2+ charge
Of what type of solutions
like any type
Metallic solids or metallic structures experience metallic bonds which are the forces of attractions between the sea of electrons and the nucleus of the metallic atoms. They share a network of highly delocalized electrons.
I therefore think that the packing efficiency decreases as the number of nearest neighbors decreases.
Answer: 0.07868 mol H₂O
Explanation:
1) Chemical equation:
Cu₂O +H₂ → 2Cu + H₂O
2) mole ratios:
1 mol Cu₂O : 1 mol H₂ : 2 mol Cu : 1 mol H₂O
3) Convert 10.00 g of Cu to grams, using the atomic mass:
Atomic mass of Cu: 63.546 g/mol
number of moles = mass in grams / atomic mass = 10.00g / 63.546 g/mol
number of moles = 0.1574 mol
4) Use proportions
2mol Cu 0.1574 mol Cu
--------------- = ---------------------
1 mol H₂O x
⇒ x = 0.1574 mol Cu × 1 mol H₂O / 2mol Cu = 0.07868 mol H₂O
That is the answer
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.