The part of the atom that is involved in chemical changes is A. electron. The electrons that are in the most outer shells are called valence electrons which are easily removed or shared to form bonds. Valence electrons are related to the number of valence electrons
<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
All compounds are molecules because a molecule is 2 or more substances/elements combined and a compound is 2 or more elements combined. But not all molecules are elements because some molecules are just combined substances with no elements combined at all.
The number of molecules : 4.967 x 10²⁴
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
8.25 moles of C₈H₁₈
The number of molecules :

Answer: The correct option is B.
Explanation: To describe the motion of an object, we use the equations of motion.



From the above equations, we require position, speed and direction through which we an calculate the displacement, velocity and acceleration.
To calculate the complete motion of an object, we require all the three factors.
Hence, the correct option is B.