Answer:
m =
x,
graph of x vs m
Explanation:
For this exercise, the simplest way to determine the mass of the cylinder is to take a spring and hang the mass, measure how much the spring has stretched and calculate the mass, using the translational equilibrium equation
F_e -W = 0
k x = m g
m =
x
We are assuming that you know the constant k of the spring, if it is not known you must carry out a previous step, calibrate the spring, for this a series of known masses are taken and hung by measuring the elongation (x) from the equilibrium position, with these data a graph of x vs m is made to serve as a spring calibration.
In the latter case, the elongation measured with the cylinder is found on the graph and the corresponding ordinate is the mass
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
Answer:
Transverse wave
Explanation:
Its because in transverse wave the particle displacement is perpendicular to the direction of wave propagation..hope it helps you...
Wavelength is the distance between identical points in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters, centimeters, or millimeters.
Wavelengths are an important factor in Wi-Fi networks. Wi-Fi operates at five frequencies, all in the gigahertz range: 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz and 5.9 GHz. Higher frequencies have shorter wavelengths, and signals with shorter wavelengths have more trouble penetrating obstacles like walls and floors.
As a result, wireless access points that operate at higher frequencies with shorter wavelengths, often consume more power to transmit data at similar speeds and distances achieved by devices that operate at lower frequencies, with longer wavelengths.