We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
The trains take <u>57.4 s</u> to pass each other.
Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.
therefore,

The relative velocity of the train A with respect to B is given by,

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.
The trains are a distance d = 2.71 km apart.
Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

Substitute 2.71 km for d and 170 km/h for 

Express the time in seconds.

Thus, the trains cross each other in <u>57.4 s</u>.
The temperature of the air above it
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.
False; the three major scales used to measure earthquakes are the Mercalli Scale, the Richter Scale, and the Magnitude Scale. I hope this helps!