Answer:
HELIOS- The god of the sun in
HAZMAT-Hazardous materials
NIRSpec- Near Infrared Spectrograph
Explanation:
Answer:
1531 m
Explanation:
The motion of the jet ski is an uniformly accelerated motion, so we can find the distance travelled by using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For the jet ski in this problem,

t = 35 s
u = 0 (it starts from rest)
Solving for s, we find the distance travelled:

The maximum force that the tires can exert on the road before slipping is 16200 N.
From the information in the question;
The coefficient of static friction = 0.9
The mass of the car = 1800 kg
Using the formula;
μ = F/R
μ = coefficient of static friction
F = force on the tires
R = the reaction force
But recall that the reaction is equal in magnitude to the weight of the car.
W=R
Hence; R = 1800 kg × 10 ms-2 = 18000 N
Making F the subject of the formula;
F = μR
Substituting values;
F = 18000 N × 0.9
F = 16200 N
Hence, the maximum force that the tires can exert on the road before slipping is 16200 N.
Learn more: brainly.com/question/18754989
31 m/s ÷ 9 m/s² = 3.44 s
Time = Change in velocity divided (÷) by acceleration.