1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
5

What is the lowest frequency that will resonate in an organ pipe 2.00 m in length, closed at one end? The speed of sound in air

is 340 m/s.
Physics
1 answer:
mario62 [17]3 years ago
4 0

Answer:

42.5 Hz.

Explanation:

The fundamental frequency of a closed pipe is given as

f₀ = v/4l....................... Equation 1

Where f₀ = lowest frequency, v = speed of sound in air, l = length of the organ pipe

Given: v = 340 m/s, l = 2.00 m.

Substitute into equation 1

f₀ = 340/(4×2)

f₀ = 340/8

f₀ = 42.5 Hz.

Hence the smallest frequency that will resonant in the organ pipe = 42.5 Hz.

You might be interested in
A 10 N force and a 15 N force are acting from a single point in opposite directions. What additional force must be added to prod
AleksAgata [21]

Answer:

5 N acting in the same direction as the 10 N force

Explanation:

10+5=15

15=15

7 0
3 years ago
Can a vector be shorter than one of its components
Sauron [17]
It can never be shorter than a component - magnitude of avector is the square root of the sum of the components squared, and a square function never produces a negative number. However, it can be the same size as its component, if that component is the only one
3 0
4 years ago
What is the name of the force that opposes, or the opposite of gravity ???!!
Novosadov [1.4K]

Answer:

Tension.

<em><u>tension</u></em> is the name of force that opposes or goes opposite of gravity

Hope this helps!

4 0
3 years ago
Read 2 more answers
A 50.0 kg object is moving at 18.2 m/s when a 200 N force
gayaneshka [121]

Answer:

distance = 21.56 m

Explanation:

given data

mass = 50 kg

initial velocity  = 18.2 m/s

force = -200 N ( here force applied to opposite direction )

final velocity = 12.6 m/s

solution

we know here acceleration will be as

acceleration a  = force ÷ mass

a = \frac{-200}{50}   =  -4 m/s²

we get here now required time that is

required time = \frac{V_{(final)} - V_{(initial)}}{a}     ...............1

put here value

required time = \frac{12.6-18.2}{-4}  

so distance will be

distance = \frac{V_{(final)}^2 - V_{(initial)}^2}{2a}    ........2

distance = \frac{12.6}^2 -{18.2}^2}{2\times (-4)}  

distance = 21.56 m

7 0
3 years ago
PLEASE HELP ASAP
alina1380 [7]

Answer:

We mentioned in the study section of Lecture 2 that hydrogen and oxygen combine in the ratio of 1 to 8, but that this is not enough information for leading to the conclusion that two hydrogen atoms combine with one of oxygen to form a water molecule. A key idea is attributed to Avagadro who said that equal volumes of gas (at the same temperature and pressure) contain equal numbers of constituent atoms or molecules. Experiments show that two liters of hydrogen gas will combine with one liter of oxygen gas to form two liters of water vapor. Each hydrogen molecule in hydrogen gas consists of two hydrogen atoms bonded together. Likewise, two oxygen atoms bind to make a oxygen molecule.

A "model" of a physical process is used to represent what one actually observes, even though this is an "ideal" model and not expected to be correct in all respects. However, it is a good enough model to explain many of the properties of gases with sufficient accuracy.

The motion of gas particles can be used to explain the pressure exerted and the temperature of a gas. The pressure on a surface is due to the force on that surface divided by its area. The force comes about from the multiple impacts of individual gas particles. Temperature, on the other hand, is DEFINED in terms of the average kinetic energy assocated with the motion of the gas particles. The greater the kinetic energy, the greater the temperature. See the apparatus shown in Figure 7.6 of the text which gives a simple way of measuring the distributions of speeds of atomic particles.

To visualize how gas particles colliding with a container create pressure, see Website II.

Gas particles move in all possible directions with differing speeds. The Kinetic Energy (KE) of a gas particle is equal to 1/2 its mass times its speeds squared. That is KE = 1/2 M x V2 , where M is the mass of the gas particle and V is its speed. The gas particles have a range of speeds, just like cars on a road, but it is the average of the speed squared times the mass, or the average kinetic energy which characterizes the temperature of a gas.

High temperature is associated with high kinetic energies and low temperatures are associated with low kinetic energies. However, keep in mind that the kinetic energy, and in this case the temperature, is proportional to the mass times the speed squared. So heavy particles moving more slowly will have the same kinetic energy as light particles moving more rapidly. Also, because the kinetic energy varies as the square of the speed, if two particles have the same mass, but one moves twice as fast as the other, it will have four times the kinetic energy (or temperature).

If temperature is associated with kinetic energy of a gas, one could ask at this point what controls the temperature of solids and liquids. It turns out that it is the kinetic energy of the constituent atoms and molecules that characterize the temperature of liquids and solids as well. We show in class a transparency picturing a solid with its atoms rigidly connected to each other. We will discuss more about liquids and solids in the next lecture, based on chapter 8. However, for now, let's keep in mind that the atoms or molecules in a solid, although bound to its neighbors in a rigid structure, can oscillate back and forth, and it is this motion that characterizes the temperature of a solid (or in a similar manner, of a liquid as well). As before, rapid oscillations mean high temperatures, and slower oscillations are lower temperatures.

4 - The Three Temperature Scales

There are three temperature scales. In the United States, we commonly use the Farenheit scale while in most other nations, the Celsius or Centigrade scale is used. Figure 7.10 shows these two scales side by side. Water boils at 212 degrees Farenheit or 100 degrees Centigrade. Water freezes at 32 degrees Farenheit or zero degrees Centigrade. However, the most important temperature scale for scientific calculations is the absolute temperature scale, or the Kelvin scale. Zero degrees Kelvin is the coldest possible temperature: it can be physically interpreted as the situation where the atoms or molecules have zero kinetic energy...so this is a very natural temperature scale. Zero degrees Kelvin is also -273 degrees Centigrade. Water freezes at +273 degrees Kelvin and zero degrees Centigrate. Hence, a difference of one degree is the same on the Centigrade and Kelvin scales, but the zero points are different.

R.S. Panvini

9/2/2002Explanation:

8 0
3 years ago
Other questions:
  • Which of these is an environmental change that occurs rapidly?
    9·1 answer
  • 5.Calculate the entropy changes for the following processes:(a)Melting of one mole of tin at its melting point, 213 ᵒC; ΔHfus =
    8·1 answer
  • In a simple RC circuit, at t=0 the switch is closed with the capacitor uncharged. If C=30µF, =50V and R=10k, what is the poten
    15·1 answer
  • What happens to air pressure as altitude decreases
    8·2 answers
  • A rocket sled is tested at "5 g" (5 times the acceleration due to gravity). If the sled starts from rest at position do= 0.00, h
    14·2 answers
  • Which of the following statements about language is true?
    6·1 answer
  • A parallel plate capacitor is created by placing two large square conducting plates of length and width 0.1m facing each other,
    13·1 answer
  • A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and t
    7·1 answer
  • Identify Label these cell parts
    6·2 answers
  • When a 12 newton horizontal force is applied to a box on a horizontal
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!