Answer:
C 350W
Explanation:
Given power output to walk on a flat ground to be 300W, h = 0.05x, v = 1.4m/s
m = 70kg and g =9.8m/s².
x = horizontal distance covered
Total energy used = potential energy used in climbing and the energy used in a walking the horizontal distance.
E = mgh + 300t
Where t is the time taken to cover the distance
x = vt and h = 0.05vt
So
E = mg×0.05×vt + 300t
Substituting respective values
E = 70×9.8×0.05×1.4t +300t = 348t
P = E/t = 348W ≈ 350W.
This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Answer:

Explanation:
We were told to calculate the speed of the ball,
Given speed of sound as 340 m
And we know that the sound of the ball hitting the pins is at 2.80 s after the ball is released from his hands.
Speed of ball = distance traveled/(time of hearing - time the sound travels).
Speed= S/t
Where S= distance traveled
t= time of hearing - time the sound travels
time=time for ball to roll+timefor sound to come back.
time of sound=16.5/340
=0.048529secs
solving for speedof ball
Then,Speed of ball = distance traveled/(time of hearing - time the sound travels).
=16.5/(2.80-0.048529) m/s = 5.997m/s
Therefore, the speed of the ball is
5.997m/s