Answer:
L = 475.718
T = 240.89 ft
M = 23.0195
LC = 472.728
R = 1225 ft
Explanation:
See the attached file for the calculation.
Answer:
Impulse =14937.9 N
tangential force =14937.9 N
Explanation:
Given that
Mass of car m= 800 kg
initial velocity u=0
Final velocity v=390 km/hr
Final velocity v=108.3 m/s
So change in linear momentum P= m x v
P= 800 x 108.3
P=86640 kg.m/s
We know that impulse force F= P/t
So F= 86640/5.8 N
F=14937.9 N
Impulse force F= 14937.9 N
We know that
v=u + at
108.3 = 0 + a x 5.8

So tangential force F= m x a
F=18.66 x 800
F=14937.9 N
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
Fuel efficiency for highway = 114.08 miles/gallon
Fuel efficiency for city = 98.79 miles/gallon
Explanation:
1 gallon = 3.7854 litres
1 mile = 1.6093 km
Let's first convert the efficiency to km/gallon:
48.5 km/litre = (48.5 * 3.7854) km/gallon
48.5 km/litre = 183.5919 km/gallon (highway)
42.0 km/litre = (42.0 * 3.7854) km/gallon
42.0 km/litre = 158.9868 km/gallon (city)
Next, we convert these to miles/gallon:
183.5919 km/gallon = (183.5919 / 1.6093) miles/gallon
183.5919 km/gallon = 114.08 miles/gallon (highway)
158.9868 km/gallon = (158.9868 /1.6093) miles/gallon
158.9868 km/gallon = 98.79 miles/gallon (city)