Answer:

Explanation:
We are given that
Distance between plates=d=2.2 cm=


Using 
We have to find the magnitude of E in the region between the plates.
We know that the electric field for parallel plates





Where 
Substitute the values


Hence, the magnitude of E in the region between the plates=
Population density<span> (in agriculture: standing stock and standing crop) is a measurement of </span>population<span> per unit area or unit volume; it is a quantity of type number </span>density<span>. It is frequently applied to living organisms, and most of the time to humans.</span>
Answer:
6.0 s
98 m/s
Explanation:
The radius of the planet is much bigger than the height of the tower, so we will assume the acceleration is constant. Neglect air resistance.
Acceleration due to gravity on this planet is:
a = GM / r²
a = (6.67×10⁻¹¹ m³/kg/s²) (2.7 × 1.48×10²³ kg) / (1.7 × 750,000 m)²
a = 16.4 m/s²
The height of the tower is:
Δy = 96 × 3.05 m
Δy = 293 m
Given v₀ = 0 m/s, find t and v.
Δy = v₀ t + ½ at²
(293 m) = (0 m/s) t + ½ (16.4 m/s²) t²
t = 6.0 s
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (16.4 m/s²) (293 m)
v = 98 m/s
Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.