Answer:

Explanation:
A function f(x) is a Probability Density Function if it satisfies the following conditions:

Given the function:

(1)p(x) is greater than zero since the range of exponents of the Euler's number will lie in 
(2)
![\int_{0}^{\infty} p(x)=\int_{0}^{\infty} \dfrac{1}{r}e^{-x/r}\\=\dfrac{1}{r} \int_{0}^{\infty} e^{-x/r}\\=-\dfrac{r}{r}\left[e^{-x/r}\right]_{0}^{\infty}\\=-\left[e^{-\infty/r}-e^{-0/r}\right]\\=-e^{-\infty}+e^{-0}\\SInce \: e^{-\infty} \rightarrow 0\\e^{-0}=1\\\int_{0}^{\infty} p(x)=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cdfrac%7B1%7D%7Br%7De%5E%7B-x%2Fr%7D%5C%5C%3D%5Cdfrac%7B1%7D%7Br%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20e%5E%7B-x%2Fr%7D%5C%5C%3D-%5Cdfrac%7Br%7D%7Br%7D%5Cleft%5Be%5E%7B-x%2Fr%7D%5Cright%5D_%7B0%7D%5E%7B%5Cinfty%7D%5C%5C%3D-%5Cleft%5Be%5E%7B-%5Cinfty%2Fr%7D-e%5E%7B-0%2Fr%7D%5Cright%5D%5C%5C%3D-e%5E%7B-%5Cinfty%7D%2Be%5E%7B-0%7D%5C%5CSInce%20%5C%3A%20e%5E%7B-%5Cinfty%7D%20%5Crightarrow%200%5C%5Ce%5E%7B-0%7D%3D1%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D1)
The function p(x) satisfies the conditions for a probability density function.
Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
Solution :
Given data is :
Density of the milk in the tank, 
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank, 
Therefore, the pressure difference between the two points is given by :

Since the tank is completely filled with milk, the vertical acceleration is 

Therefore substituting, we get




Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.
Answer:
The new height the ball will reach = (1/4) of the initial height it reached.
Explanation:
The energy stored in any spring material is given as (1/2)kx²
This energy is converted to potential energy, mgH, of the ball at its maximum height.
If the initial height reached is H
And the initial compression of the spring = x
So, mgH = (1/2)kx²
H = kx²/2mg
The new compression, x₁ = x/2
New energy of loaded spring = (1/2)kx₁²
And the new potential energy = mgH₁
mgH₁ = (1/2)kx₁²
But x₁ = x/2
mgH₁ = (1/2)k(x/2)² = kx²/8
H₁ = kx²/8mg = H/4 (provided all the other parameters stay constant)
The first factor is wind speed, the second factor is wind duration, and the last factor is the fetch, the distance over which the wind blows without a change in direction.
all these factors determines the strength of a wave.
hope this helps :)