1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
7

A mass of 1.9 kg of air at 120 kPa and 24°C is contained in a gas-tight, frictionless piston–cylinder device. The air is now com

pressed to a final pressure of 600 kPa. During the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. Calculate the work input during this process. Take the gas constant of air as R = 0.287 kJ/kg·K.
Engineering
1 answer:
emmainna [20.7K]3 years ago
6 0

Answer:

W=-260.66 kJ (negative answer means, that the work was done on the gas)

Explanation:

1) Convert temperature from C to K- T=24+273=297K- all temperature in the gas problems should be used in Kelvins;

2) We need to analyse type of the process- it is given, that the temperature is constant, so it is an Isothermal process, which means, that the equation of the process is: pV=const (constant);

3) Work, done on the system, should be calculated using the following equation: W=\int\limits^{Vb}_{Va} {p} \, dV

4) To calculate initical and final volumes (Va and Vb), we can use the following equation: pV=mRT, so V=mRT/p. Note, that the pressure is changing, thus we can calculate volumes for the both cases- initial and final, using initial (120kPa) and final (600kPa) pressures, in addition, we can find equation for the pressure, as function of the volume, which we need to use for the integration in step 3: p=mRT/V;

5) Now we can calculate the integral, given in the step 3: W=mRT ln(\frac{Vb}{Va}). As we have pressure as a known values, we can re-write the equation, using pressures: W=mRT ln(\frac{pa}{pb})=1.9*0.287*279*ln(\frac{120}{160})=-260.66 kJ

Note, that natural logarithm (ln) yields negative answer, which supports the question, that the work was done on the gas, not by the gas.

You might be interested in
Match the terms with the correct definitions.
arsen [322]
I think answer should be the first one please give me brainlest let me know if it’s correct or not okay thanks bye
7 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
Which of the following is NOT a breach of Netiquette?
alexandr402 [8]

Answer:

I need some more point and i do not understand your question

Explanation:

7 0
3 years ago
A container filled with a sample of an ideal gas at the pressure of 150 Kpa. The gas is compressed isothermally to one-third of
lyudmila [28]

Answer: c) 450 kPa

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}     (At constant temperature and number of moles)

P_1V_1=P_2V_2  

where,

P_1 = initial pressure of gas  = 150 kPa

P_2 = final pressure of gas  = ?

V_1 = initial volume of gas   = v L

V_2 = final volume of gas  = \frac{v}{3}L

150\times v=P_2\times \frac{v}{3}  

P_2=450kPa

Therefore, the new pressure of the gas will be 450 kPa.

7 0
4 years ago
A 3 m aluminum pole is kept at a residential site for construction
Aliun [14]

Answer:

I don't know sorry

Explanation:

5 0
3 years ago
Other questions:
  • There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
    10·1 answer
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • One of our wifi network standards is IEEE 802.11ac. It can run at 6.77 Gbit/s data rate. Calculate the symbol rate for 801.11ac
    5·1 answer
  • A piston having a diameter of 5.48 inches and a length of 9.50 in slides downward with a
    13·1 answer
  • As a top-level executive at your own company, you are worried that your employees may steal confidential data too easily by down
    12·1 answer
  • Can someone explain the answer for this question please? -metrology
    12·1 answer
  • A heat pump with refrigerant-134a as the working uid is used to keep a space at 25C by absorbing heat from geothermal water that
    5·1 answer
  • Special certification is required for technicians who handle which of the following systems?
    10·1 answer
  • How can feeding plant crops to animals be considered an efficient use of those crops?
    6·1 answer
  • Can someone please help me?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!