Answer: 383.22K
Explanation:
L = 3m, w = 1.5m
Area A = 3 x 1.5 = 4.5m2
Q' = 750W/m2 (heat from sun) ,
& = 0.87
Q = &Q' = 0. 87x750 = 652.5W/m2
E = QA = 652.5 x 4.5 = 2936.25W
T(sur) = 300K, T(panel) = ?
Using E = §€A(T^4(panel) - T^4(sur))
§ = Stefan constant = 5.7x10^-8
€ = emmisivity = 0.85
2936.25 = 5.7x10^-8 x 0.85 x 4.5 x (T^4(panel) - 300^4)
T(panel) = 383.22K
See image for further details.
Answer:
I = 8.3 Amp
potential drop = 83 V
Explanation:
Power = 100 KW
V = 12,000 V
R = 10 ohms
a)
Calculate current I in each wire:
P = I*V
I = P / V
I = 100 / 12 = 8.333 A
b)
Calculate potential drop in each wire:
V = I*R
V = (8.3) * (10)
V = 83 V
Answer and Explanation:
Aliasing is a distortion in the signal when a continuous signal is converted into digital signal that is ADC process, due to this effect the signal aliases of one another.There will be no aliasing effect if the frequency of the signal will not be higher than the sampling frequency
The another way of avoiding aliasing is to limit the range of the continuous signal.
Answer:
transmitter hope thus helped!
Explanation:
Answer:
The original length of the specimen is found to be 76.093 mm.
Explanation:
From the conservation of mass principal, we know that the volume of the specimen must remain constant. Therefore, comparing the volumes of both initial and final state as state 1 and state 2:
Initial Volume = Final Volume
πd1²L1/4 = πd2²L2/4
d1²L1 = d2²L2
L1 = d2²L2/d1²
where,
d1 = initial diameter = 19.636 mm
d2 = final diameter = 19.661 mm
L1 = Initial Length = Original Length = ?
L2 = Final Length = 75.9 mm
Therefore, using values:
L1 = (19.661 mm)²(75.9 mm)/(19.636 mm)²
<u>L1 = 76.093 mm</u>