Answer:
The maximum velocity is 0.489 m/s
Explanation:
Maximum velocity (v) = angular velocity (w) × radius (r)
w = 33.33 rpm = 33.33×0.1047 = 3.4897 rad/s
r = 14 cm = 14/100 = 0.14 m
v = 3.4897×0.14 = 0.489 m/s
'C' and 'D' are the same statement, and none of the 3 choices
is good.
Electrical energy is produced in a generator, a solar panel, or
a battery, not in things with resistance.
From the generator or battery, current flows through a circuit of
one or more components.
The greater the resistance of a component, the more energy is
LOST as the current flows through it. The component dissipates
the energy in the form of heat.
To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
A constant velocity implies the two forces must be equal and opposite.
Friction acts horizontal to the ground, therefore we must find the force applied to the sled rope that acts horizontal to the ground.
Do this by resolving:
Force = 80cos53
The force opposing this is equal, and so also = 80cos53 = 48 N (2 sig. fig.)