Your answer would be D.
If an object has mass, it has gravity, and the more mass it has, the stronger its gravity. During the formation of planets, essentially, various matter and elements pulled and fused together (because of the gravity), forming planetesimals.
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
Answer:
D. Downshift to allow you to turn more sharply
For resistance we have R=ρ l/a
thus for conductance we have K=σ a/l
conductance,K=1/R
conductivity,σ =1/ρ
σ = .80 Ω-1 cm-1
l =9 cm
a = 3 cm²
K=.80 ×3/9
=0.26 Ω-1