Explanation:
Given that,
The vertical motion of mass A is defined by the relation as :

At t = 1 s

x = 115.33 mm
(a) We know that,
Velocity, 


At t = 1 s

v = 18.94 mm/s
We know that,
Acceleration, 


At t = 1 s


(b) For maximum velocity,

t = 45 seconds
For maximum acceleration,

t = 61.8 seconds
Hence, this is the required solution.
Answer:
True
Explanation:
It is true that the real definition of lenz's law in magnetism is the current is induced in the closed conducting loop in such a direction that the magnetic field induced by this current opposes the change in the flux through the loop.
This means that induced current opposes the very cause that produces it.
Answer:
The back end of the vessel will pass the pier at 4.83 m/s
Explanation:
This is purely a kinetics question (assuming we're ignoring drag and other forces) so the weight of the boat doesn't matter. We're given:
Δd = 315.5 m
vi = 2.10 m/s
a = 0.03 m/s^2
vf = ?
The kinetics equation that incorporates all these variables is:
vf^2 = vi^2 + 2aΔd
vf = √(2.1^2 + 2(0.03)(315.5))
vf = 4.83 m/s