Light does not travel at a constant speed in a vacuum, compared to in air, because the light is being absorbed by atoms and molecules in the air. But light does travel at a constant speed in a vacuum.
So I agree with A
All that talk about moving forward is irrelevant (I think)
Answer:
4.8× 10²³ atoms
Explanation:
Given data:
Number of moles of San element = 0.796 mol
Number of atoms present = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
0.796 mol × 6.022 × 10²³ atoms / 1mol
4.8× 10²³ atoms
Alkenes on reaction with meta-chloroperoxybenzoic acid (MCPBA ) produces epoxides. When styrene is reacted with mCPBA it gives 2-phenyloxirane as shown below,
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Yes... that is correct.
CH4 is methane so the coefficent in front of it would double the number of atoms of each element