Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.
Answer:
wouldn't it be 25 miles?? yeah
Explanation:
Answer:
Resultant force, R = 10 N
Explanation:
It is given that,
Force acting along +x direction, 
Force acting along +y direction, 
Both the forces are acting on a point object located at the origin. Let the resultant force of the object is given by R. So,

Here 


R = 10 N
So, the resultant force on the object is 10 N. Hence, this is the required solution.
Answer:
weight!!!! Free fall is the motion of a body where its weight is the only force acting on an object.
Answer:
<h3>62.5N</h3>
Explanation:
The pressure at one end of the piston is equal to the pressure on the second piston.
Pressure = Force/Area
F1/A1 = F2/A2
Given
F1 = 250N
A1 = 2.0m²
A2 = 0.5m²
F2 = ?
Substituting the given values in the formula;
250/2 = F2/0.5
cross multiply
250*0.5 = 2F2
125 = 2F2
F2 = 125/2
F2 = 62.5N
Hence the force needed to lift this piston if the area of the second piston is 0.5 m^2 is 62.5N