Answer:

Explanation:
When we push the box from the bottom of the incline towards the top then by work energy theorem we can say that
Work done by all the forces = change in kinetic energy of the system

here we know that

also we know that the length of the incline is given as

now we have

so we have

Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
C., used in power plants I think.
The answer is 5.88 · 10⁻⁷<span> m.</span>
To calculate this we will use the light equation:
v = λ · f,
where:
v - the speed of light (units: m/s)
<span>λ - the wavelength of the ray (units: m)
</span>f - the frequency of the ray (units: Hz = 1/s <span>since Hz means cycles per second (f=1/T))
</span>
It is given:
f = 5.10 · 10¹⁴ Hz = 5.10 · 10¹⁴<span> 1/s
v = 2.998 </span>· 10⁸<span> m/s
</span><span>λ = ?
</span>
If v = λ · f, then λ = v ÷ f:
λ = 2.998 · 10⁸ m/s ÷ 5.10 · 10¹⁴ 1/s
= 0.588 · 10⁸⁻¹⁴ · m
= 0.588 · 10⁻⁶ m
= 5.88 · 10⁻⁷ m