1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helga [31]
3 years ago
14

In a particular experiment to study the photoelectric effect, the frequency of the incident light and the temperature of the met

al are held constant. Assuming that the light incident on the metal surface causes electrons to be ejected from the metal, what happens if the intensity of the incident light is increased?
Check all that apply.

A. The work function of the metal decreases.
B. The number of electrons emitted from the metal per second increases.
C. The maximum speed of the emitted electrons increases.
D. The stopping potential increases.
Physics
1 answer:
qwelly [4]3 years ago
6 0

Answer:

B. The number of electrons emitted from the metal per second increases.

Explanation:

Light consists of photons . Energy of each photon depends upon frequency of light . The increase in intensity increases the number of photons . It does not increase energy of photons .

So if a high intensity light falls on a photosensitive plate , each photon ejects one electron . So number of electrons increases if we increase intensity of photon. It does not increase kinetic energy of ejected electrons . Work function depends upon the nature of plate.

You might be interested in
xConsider the following reduction potentials: Cu2+ + 2e– Cu E° = 0.339 V Pb2+ + 2e– Pb E° = –0.130 V For a galvanic cell employi
slega [8]

Answer:

Approximately \rm 90\; kJ.

Explanation:

Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (E^{\circ}(\text{cell})) is equal to

E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode}).

There are two half-reactions in this question. \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu and \rm Pb^{2+} + 2\,e^{-} \rightleftharpoons Pb. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of E^{\circ}(\text{cell}) should be positive.

In this case, E^{\circ}(\text{cell}) is positive only if \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu is the reaction takes place at the cathode. The net reaction would be

\rm Cu^{2+} + Pb \to Cu + Pb^{2+}.

Its cell potential would be equal to 0.339 - (-0.130) = \rm 0.469\; V.

The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:

\Delta G^{\circ} = n \cdot F \cdot E^{\circ} (\text{cell}),

where

  • n is the number moles of electrons transferred for each mole of the reaction. In this case the value of n is 2 as in the half-reactions.
  • F is Faraday's Constant (approximately 96485.33212\; \rm C \cdot mol^{-1}.)

\begin{aligned}\Delta G^{\circ} &= n \cdot F \cdot E^{\circ} (\text{cell})\cr &= 2\times 96485.33212 \times (0.339 - (-0.130)) \cr &\approx 9.0 \times 10^{4} \; \rm J \cr &= 90\; \rm kJ\end{aligned}.

5 0
2 years ago
A mass of 0.5 kg hangs motionless from a vertical spring whose length is 1.10 m and whose unstretched length is 0.50 m. Next the
ser-zykov [4K]

Answer:

The maximum length during the motion is L_{max} = 1.45m

Explanation:

From the question we are told that

           The mass  is  m =0.5 kg

            The vertical spring  length is  L = 1.10m

            The unstretched  length is  L_{un} = 1.30m

          The initial speed is v_i = 1.3m/s

          The new length of the spring L_{new} =  1.30 m

The spring constant k is mathematically represented as

                           k = -\frac{F}{y}

Where F is the force applied  = m * g = 0.5 * 9.8=4.9N

           y is the difference in weight which is   =1.10-0.50=0.6m

The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)

    Now  substituting values accordingly

                    k =  \frac{4.9}{0.6}

                       = 8.17 N/m

The  elastic potential energy is given as E_{PE} = \frac{1}{2} k D^2

  where D is this the is the displacement  

Since Energy is conserved the total elastic potential energy would be

             E_T = initial  \ elastic\ potential \ energy + kinetic \ energy

            E_T = \frac{1}{2} k D_{max}^2 =   \frac{1}{2} k D^2 + \frac{1}{2} mv^2

Substituting value accordingly

                \frac{1}{2} *8.17 *D_{max}^2 =\frac{1}{2} * 8.17*(1.30 - 0.50)^2 + \frac{1}{2} * 0.5 *1.30^2

                4.085 * D_{max}^2 = 3.69

                 D^2_{max} = 0.9033

                D_{max} = 0.950m

So to obtain total length we would add the unstretched length

 So we have

                  L_{max} = 0.950 + 0.5 = 1.45m

                               

               

               

                 

                     

5 0
2 years ago
Read 2 more answers
A cart with a mass of 120 kg and a velocity
klasskru [66]

Answer:

dumpster mass

Explanation:

you will need the mass of the dumpster to calculate using conservation of momentum

6 0
2 years ago
What stops gravity from pulling you to the center of the earth
Artyom0805 [142]

Answer:

electron degeneracy pressure...or in other word electro magnetic repulsion

8 0
2 years ago
Read 2 more answers
Consider the following possibilities and select the correct choice.
dezoksy [38]

Answer:

Tx not but mybe

Explanation:

for that reason its just trying to help

4 0
2 years ago
Other questions:
  • Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
    5·1 answer
  • A. The distance to a star is approximately 8.58 ✕ 10^18 m. If this star were to burn out today, in how many years would we see i
    5·1 answer
  • A pitcher delivers a fast ball with a velocity of 43 m/s to the south. the batter hits the ball and gives it a velocity of 51 m/
    7·1 answer
  • 23. Challenge: A gas is heated so that it expands from a volume of 1.0L to a volume of 1.5 l. If the
    13·1 answer
  • The variation in the pressure of helium gas, measured from its equilibrium value, is given by ΔP = 2.9 × 10−5 cos (6.20x − 3 000
    6·1 answer
  • A rock is thrown downward from an unknown height above the ground with an initial speed of 10m/s. It strikes the ground 3s later
    12·1 answer
  • Based on Archimedes' principle, the greatest buoyant force an object can experience in water is determined by which quantity?
    12·1 answer
  • Which part of the ear receives the signal from the eardrum?​
    9·1 answer
  • I need helpppp for brainlyy
    6·1 answer
  • For each of the following scenarios, describe the force providing the centripetal force for the motion: (Be very specific, and g
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!