Answer:
4 %
2 ) 3.42 %
Explanation:
Sensitivity requirement of 4 milligram means it is not sensitive below 4 milligram or can not measure below 4 milligram .
Given , 4 milligram is the maximum error possible .
Measured weight = 100 milligram
So percentage maximum potential error
= (4 / 100) x 100
4 %
2 )
As per measurement
weight of 6 milliliters of water
= 48.540 - 42.745 = 5.795 gram
6 milliliters of water should measure 6 grams
Deviation = 6 - 5.795 = - 0.205 gram.
Percentage of error =(.205 / 6 )x 100
= 3.42 %
Mercury has less mass than earth. So the answer is B
The answer is slightly left and slightly right of the curved end of the horseshoe.
Answer:
The latent heat of vaporization of water is 2.4 kJ/g
Explanation:
The given readings are;
The first (mass) balance reading (of the water) in grams, m₁ = 581 g
The second (mass) balance reading (of the water) in grams, m₂ = 526 g
The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ
The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ
The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature
Based on the measurements, we have;
The latent heat of vaporization = ΔQ/Δm
∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g
The latent heat of vaporization of water = 2.4 kJ/g