Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>
The answer to this question is force
Answer:
'A' is the the point on the graph that shows a temperature of 40°C and the time of 25 minutes
Answer:
Time, t = 0.57 hours
Explanation:
It is given that,
Speed of the school bus, v = 35 mi/hr
Distance covered by the bus, d = 20 miles
We need to find the time taken by the bus to get to school. Time taken by the bus is given by :
t = 0.57 hours
So, the time taken by the bus to reach school is 0.57 hours. Hence, this is the required solution.