It takes work to push charge through a change of potential.
There's no change of potential along an equipotential path,
so that path doesn't require any work.
<u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u><em> </em><em>F</em><em>a</em><em>l</em><em>s</em><em>e</em>
<u>E</u><u>x</u><u>p</u><u>l</u><u>a</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
<em>False because it can leads to overloading and further to short circut.</em>
<h2>
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>I</u></em><em><u>t</u></em><em><u> </u></em><em><u>W</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>H</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>Y</u></em><em><u>o</u></em><em><u>u</u></em><em><u>!</u></em></h2>
Answer:
Charge on two particles is given as

Explanation:
As we know that the electrostatic force between two charges is given by formula

so we will have



so we have


Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work