Answer:
Frequency of the light will be equal to 
Explanation:
We have given wavelength of the light 
Velocity of light is equal to 
We have to find the frequency of light
We know that velocity is equal to
, here
is wavelength and f is frequency of light
So frequency of light will be equal to 
So frequency of the light will be equal to 
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Answer:
The force on one side of the plate is 3093529.3 N.
Explanation:
Given that,
Side of square plate = 9 m
Angle = 60°
Water weight density = 9800 N/m³
Length of small strip is


The area of strip is

We need to calculate the force on one side of the plate
Using formula of pressure


On integrating




Hence, The force on one side of the plate is 3093529.3 N.
Answer:
t₁ = 3 s
Explanation:
In this exercise, the vertical displacement equation is not given
y = 240 t + 16 t²
Where y is the displacement, 240 is the initial velocity and 16 is half the value of the acceleration
Let's replace
864 = 240 t + 16 t²
Let's solve the second degree equation
16 t² + 240 t - 864 = 0
Let's divide by 16
t² + 15 t - 54 = 0
The solution of this equation is
t = [-15 ± √(15 2 - 4 1 (-54)) ] / 2 1
t = [-15 ±√(225 +216)] / 2
t = [-15 + - 21] / 2
We have two solutions.
t₁ = [-15 +21] / 2
t₁ = 3 s
t₂ = -18 s
Since time cannot have negative values, the correct t₁ = 3s
The following choice that is NOT a way that machines provides a mechanical advantage is to change direction. The correct answer is A.