To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore



'A' is correct. B, C, and D are false statements.
Answer:
For example, the toes are anterior to the heel, and the popliteus is posterior to the patella. Superior and inferior, which describe a position above (superior) or below (inferior) another part of the body. For example, the orbits are superior to the oris, and the pelvis is inferior to the abdomen.
Explanation:
A book falls to the floor.
A car skids to a stop.
A foam ball launches from a spring (Are the right answer, just did this one 4:34 pm Jan/21/19)
Answer:
c. The coefficient of kinetic friction is less than the coefficient of static friction
Explanation:
When the box finally does break loose. Then the component of the box weight which is parallel to the board weight parallel component, is equal to the
.

For the box to acce;erate thee must be non-zero net force acting on the box parallel to the board. Or we can say,

Therefore the force of kinetic friction must be less than the force of static friction. Thus,
