Answer:
0.0042 M is the molarity of tartaric acid in this sample of wine.
Explanation:
To calculate the concentration of acid, we use the equation given by neutralization reaction:
where,
are the n-factor, molarity and volume of acid which is tartaric acid
are the n-factor, molarity and volume of base which is NaOH.
We are given:
Putting values in above equation, we get:
0.0042 M is the molarity of tartaric acid in this sample of wine.
The balanced chemical equation would be as follows:
<span>K2PtCl4(aq) + 2NH3(aq) --> Pt(NH3)2Cl2(s) + 2KCl(aq)
We are given the amount of </span>K2PtCl4 to be used in the reaction. This will be the starting point for our calculations. We do as follows:
65 g K2PtCl4 ( 1 mol / 415.09 g ) ( 1 mol Pt(NH3)2Cl2 / 1 mol K2PtCl ) ( 300.051 g / 1 mol ) = 46.99 g Pt(NH3)2Cl produced
I think that a writer may use all of the following techniques to lead the reader to a flashback EXCEPT: a. a memory
Answer:
The role that chlorine atoms have in increasing the depeltion rate ozone is that Cl acts as a catalyst.
Explanation:
- From the two steps of the reaction:
- O₃ + Cl· → ClO· + O₂
- ClO· + O → Cl· + O₂
- The overall reaction is: O₃ + O → 2O₂
- It is clear that ClO· is an intermediate that has been produced within the first step and has been consumed in the second step.
- Also, Cl· is considered as a catalyst in this reaction that it has been consumed in the first step and has been produced in the second step, which means that it does not get up in the reaction, that is the main characteristic of the catalyst.
- The catalyst usually increases the rate of the reaction by lowering its energy of activation (The minimum energy that is required to initiate the reaction) by proceeding the reaction in an alternative pathway <em>(changing the reaction mechanism)</em>.
- Hence, the role affecting the reaction rate that chlorine atoms have in increasing the depletion rate of ozone that it acts as a catalyst and does not get used up in the reaction.
Answer:
A balanced chemical equation follows law of conservation of mass. This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This means that total mass on the reactant side is equal to the total mass on the product side.