Boiling point of cyclohexane at 620 mm hg?
Standard atmospheric pressure is 760 mm Hg. Boiling point at 760 mm= 80.74˚C
A liquid boils when its vapor pressure is equal to the atmospheric pressure. The vapor pressure of a liquid is proportional the absolute temperature of the liquid.
As the atmospheric pressure decreases, less vapor pressure is needed to cause the liquid to boil. Less vapor pressure means lower temperature.
The boiling point of cyclohexane at 620 mm Hg is less than 80.74˚C
TRY THAT OR THIS
271.78
X4O10
Let molar mass of X be y
molar mass = 4y + 10 x 16 = 4y+160
so, moles = 85.2 / (4y+160)
Moles of oxygen = 10 x [85.2 / (4y+160) ]
Mass of oxygen = 16 x 10 x [85.2 / (4y+160) ]
which is 48.0
so, 48 = 16 x 10 x [85.2 / (4y+160) ]
Solve the equation to get y.
y = 31
Answer:
4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Explanation:
By ideal gas equation:

Number of moles (n)
can be written as: 
where, m = given mass
M = molar mass

where,
which is known as density of the gas
The relation becomes:
.....(1)
We are given:
M = molar mass of chloroform= 119.5 g/mol
R = Gas constant = 
T = temperature of the gas = 
P = pressure of the gas = 1.00 atm
Putting values in equation 1, we get:

4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Please refer to the attachment for a complete classification of your specified matter.
Well you see unicellular organisms are very unique in the fact that they live all on their own and move around with a flagellum or little motor, but to the point unicellular organisms carry out essentially every function in life and they must in order to simply survive. So it's most likely D.