As if the energy isn't burned off it turns into fat.
The equilibrium constant of reaction, usually denoted as K, is a unit of ratio. The ratio involves concentrations of products to reactants. But you also have to incorporate their stoichiometric coefficients in the reaction as their respective exponents. Note that substances in their aqueous state are the ones that are included only in the expression. To properly show you how it's done, consider this equilibrium reaction:
aA (aq) + bB (l) ⇆ nN (aq)
Since only reactant A and product N are aqueous, the equilibrium constant for this reaction is:
K = [N]ⁿ/[A]ᵃ
where the [] brackets denotes concentration in molarity
Now, let's apply this to the given equation:
Cr₂O²⁻ (aq) + 6 I⁻ (aq) + 14 H⁺ (aq) → 3 I₂ (s) + 2 Cr³⁺ (aq) + 7 H₂O<span> (l)
</span>I think there is a typographical error because Cr₂O²⁻ has a negative 2 charge rather than -27. Remember that only substances in aqueous states are included in the K expression. Therefore, the expression for K is:
K = [Cr³⁺]² / [Cr₂O²⁻][I⁻]⁶[H⁺]¹⁴
Answer:
ummmm I don't know of sorry
Answer:
Visible light contains all the colors from violet to red. An object gets its color when electrons absorb energy from the light and become “excited” (raised to a state of increased energy). The excited electrons absorb certain wavelengths of light.
The Sun emits light of every possible frequency at once, including at frequencies too high or too low for us to see. But the Sun's highest intensity radiation aligns approximately with our visible range – red through blue. That's no coincidence – like all animals on Earth, we have evolved to make best use of the light available.
Explanation: