Answer:
No, it cannot. The car needs the friction of the surface to drive because the car pushes the surface backwards, and the surfaces makes a reaction force pushing the car forward, and that works because of the friction. In a frictionless surface the tires would rotate in the same place
I think these gases are water vapor and nitrogen. As the temperature rises, these water vapor molecules, would condense and form the oceans we have. Also, it was said that in the early atmosphere, nitrogen is very abundant and even today the composition of air is 79% by volume.
Answer:
6227.866 N
Explanation:
F = G . m(goku) . m(planet) / d²
F = 6.674 x 10-¹¹ x 62 x 1.458 . 10¹⁵ / 31²
F = 6227.866 N
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

<span>Average velocity can be calculated by determining the total displacement divided by the total time of travel. The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point. Average velocity is different from average speed because it considers the direction of travel and the overall change in position.</span>