Answer:
Well, their are two answers in their. It would be Ask their Parent for assistance in persuading and Ask for an opportunity to earn extra credit:)
Explanation:
The answer is the last option.
Answer:
So waves are everywhere. But what makes a wave a wave? What characteristics, properties, or behaviors are shared by the phenomena that we typically characterize as being a wave? How can waves be described in a manner that allows us to understand their basic nature and qualities?
A wave can be described as a disturbance that travels through a medium from one location to another location. Consider a slinky wave as an example of a wave. When the slinky is stretched from end to end and is held at rest, it assumes a natural position known as the equilibrium or rest position. The coils of the slinky naturally assume this position, spaced equally far apart. To introduce a wave into the slinky, the first particle is displaced or moved from its equilibrium or rest position. The particle might be moved upwards or downwards, forwards or backwards; but once moved, it is returned to its original equilibrium or rest position. The act of moving the first coil of the slinky in a given direction and then returning it to its equilibrium position creates a disturbance in the slinky. We can then observe this disturbance moving through the slinky from one end to the other. If the first coil of the slinky is given a single back-and-forth vibration, then we call the observed motion of the disturbance through the slinky a slinky pulse. A pulse is a single disturbance moving through a medium from one location to another location. However, if the first coil of the slinky is continuously and periodically vibrated in a back-and-forth manner, we would observe a repeating disturbance moving within the slinky that endures over some prolonged period of time. The repeating and periodic disturbance that moves through a medium from one location to another is referred to as a wave.
Hope That Helps!!
Explanation:
Answer:
Since there is only one path for the charges to flow through, the current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.
Answer:
The value is 
Explanation:
From the question we are told that
The diameter is 
The length of the wire is 
Generally the cross sectional area of the copper wire is mathematically represented as

=> 
=> 
Generally the resistance is mathematically represented as

Here
is the resistivity of copper with the value 
=> 
=> 