The value of normal force as the slider passes point B is
The value of h when the normal force is zero
<h3>How to solve for the normal force</h3>
The normal force is calculated using the work energy principle which is applied as below
K₁ + U₁ = K₂
k represents kinetic energy
U represents potential energy
the subscripts 1,2 , and 3 = a, b, and c
for 1 to 2
K₁ + W₁ = K₂
0 + mg(h + R) = 0.5mv²₂
g(h + R) = 0.5v²₂
v²₂ = 2g(1.5R + R)
v²₂ = 2g(2.5R)
v²₂ = 5gR
Using summation of forces at B
Normal force, N = ma + mg
N = m(a + g)
N = m(v²₂/R + g)
N = m(5gR/R + g)
N = 6mg
for 1 to 3
K₁ + W₁ = K₃ + W₃
0 + mgh = 0.5mv²₃ + mgR
gh = 0.5v²₃ + gR
0.5v²₃ = gh - gR
v²₃ = 2g(h - R)
at C
for normal force to be zero
ma = mg
v²₃/R = g
v²₃ = gR
and v²₃ = 2g(h - R)
gR = 2gh - 2gR
gR + 2gR = 2gh
3gR = 2gh
3R/2 = h
Learn more about normal force at:
brainly.com/question/20432136
#SPJ1
Answer:
= 9.8°
Explanation:
Width of one slit (a₁ ) = 1 / 1000 mm=0.001 mm = 10⁻⁶ m.
width of one slit in case 2 (a₂ ) = 1/500 =2 x 10⁻⁶ m
angular position of fringe, Sinθ = n λ /a
n is order of fringe , λ is wave length of light and a is slit aperture
So Sinθ ∝ 1 / a
Sin θ₁ /Sin θ₂ = a₂/a₁ ;
Sin20°/sinθ₂ = 2 / 1
sinθ₂ = Sin 20° / 2 = .342/2 = .171
θ₂ = 9.8 °
What? what what what what