If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick

whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that
Answer:
0.149 s or 0.15 s
Explanation:
let initially ball is moving towards left hence initial velocity = - 28.62 m/s
final velocity as ball moves right = +20 m/s
force = rate of change in momentum
force = mass × change in velocity / time
or time = mass × change in velocity / force
time = 2× ( 20 -( -28.62)) / 652.36
time = 2× ( 20 +28.62)) / 652.36
time = 2× 48 .62/652.36
time = 0.149 s or 0.15 s
To act as the Sun' was accepted but if you put 'sunlight' alone it was not accepted. The examiner wanted you to state that the infra red radiation was needed to warm up the water.
The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,

Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit,
: but as we saw from the previous equation, the orbital period of the Earth is proportional to
, therefore as
increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly