I believe the answer is C
The answer would be 1,3,1,3
Answer:
Molar absorptivity or molar extinction co-effecient = 2120.14 cm⁻¹M⁻¹
Explanation:
First convert Concentration from ppm inM or mol/l
⇒ Molar mass of KMnO₄ = 158.03 g
⇒ 4.48 ppm = 4.48 mg/l = 4.48 x 10⁻³ g/l
⇒ Molarity =
= 2.83 x 10⁻⁵ molar
Absorbance (A) = - log(T) ( T = % transmittance)
= - log(0.859)
= 0.06
According to Lambert Beer's law
ε = 
or, ε = 
or, ε = 2120.14 cm⁻¹M⁻¹
Where
ε = Molar absorptivity
A = absorbance
C = Molar concentration of KMnO₄ solution
l = length
Within the core of the Sun, temperatures and pressures are high enough to fuse hydrogen atoms into helium, which is the Sun's main form of energy production. Assuming there was a slight mistake in where you have copied the results here the correct answer is the third option.
Hope this helps!
This problem is providing the mass, energy, initial temperature and specific heat of a sample of copper that is required to calculate the final temperature.
Thus, we recall the general heat equation:

Which has to be solved for the final temperature,
as follows:

Finally, we plug in the numbers to obtain:

However, this result is not given in the choices.
Learn more: