Answer: 115 Liters
Explanation: I took the test on TFL, this is the right answer.
Answer:
The initial temperature is 499 K
Explanation:
Step 1: Data given
initial volume = 12 cm3 = 12 mL
Final volume = 7 cm3 = 7mL
The final temperature = 18 °C = 291 K
Step 2: Calculate the initial temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 0.012 L
⇒with T1 = the initial volume = ?
⇒with V2 = the final volume 0.007 L
⇒with T2 = The final temperature = 291 K
0.012 / T1 = 0.007 / 291
0.012/T1 = 2.4055*10^-5
T1 = 0.012/2.4055*10^-5
T1 = 499 K
The initial temperature is 499 K
Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
Mass using grams because of the balance scale is evenly weighted not from springs and gravity like a normal scale.
Mole= Molarity. Volume(L) = (25)(2)= 50 moles