For example, water. In its liquid state we drink it , in its solid state (ice ) we use it to make our drinks colder or t numbs pain when wrapped in cloth and it’s gas state ( water vapour) we steam vegetables. In conclusion many different properties of matter are used for various purposes
Answer:
There are 1.287 grams of acetylene collected
Explanation:
Total gas pressure = 909 mmHg
Vapor pressure of water = 20.7 mmHg
Pressure of acetylene = 909 mmHg - 20.7 mmHg = 888.3 mmHg
1mmHg = 1 torr
22 ° C + 273.15 = 295.15 Kelvin
Ideal gas law ⇒ pV = nRT
⇒ with p = pressure of the gas in atm
⇒ with V = volume of the gas in L
⇒ with n = amount of substance of gas ( in moles)
⇒ with R = gas constant, equal to the product of the Boltzmann constant and the Avogadro constant (62.36 L * Torr *K^−1 *mol^−1)
⇒ with T = absolute temperature of the gas (in Kelvin)
888.3 torr * 1.024 L = n * 62.36 L * Torr *K^−1 *mol^−1 * 295.15 K
n = 0.04942 moles of C2H2
Mass of C2H2 = 0.04942 moles x 26.04 g/mole = 1.287 g
There are 1.287 grams of acetylene collected
In 1869 he published a table of the elements organized by increasing atomic mass.
Mendeleev is called the "father of the modern periodic table
stated that if the atomic weight of an element caused it to be placed in the wrong group, then the weight must be wrong. (He corrected the atomic masses of Be, In, and U)
was so confident in his table that he used it to predict the physical properties of three elements that were yet unknown.
After the discovery of these unknown elements between 1874 and 1885, and the fact that Mendeleev's predictions for Sc, Ga, and Ge were amazingly close to the actual values, his table was generally accepted.
However, in spite of Mendeleev's great achievement, problems arose when new elements were discovered and more accurate atomic weights determined.
STOP DELETING MY COMMENTS PEOPLE PLEASE!!!!!!!!!
Answer : The new pressure if the volume changes to 560.0 mL is, 280 mmHg
Explanation :
According to the Boyle's, law, the pressure of the gas is inversely proportional to the volume of gas at constant temperature and moles of gas.

or,

where,
= initial pressure = 560.00 mmHg
= final pressure = ?
= initial volume = 280 mL
= final volume = 560.0 mL
Now put all the given values in the above formula, we get:


Therefore, the new pressure if the volume changes to 560.0 mL is, 280 mmHg
The right answer for the question that is being asked and shown above is that: "Water’s polarity produces a high density, which allows water to move to the leaves." Example best shows that the chemistry of water is helpful to plants is that <span>Water’s polarity produces a high density, which allows water to move to the leaves.</span>