1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
3 years ago
5

First, you will investigate purely vertical motion. The kinematics equation for vertical motion (ignoring air resistance) is giv

en by y(t)=y0+v0t−(1/2)gt2 , where y0=0 is the initial position, v0 is the initial speed, and g is the acceleration due to gravity. Drag the cannon downwards so it is at ground level, or 0 m (which represents the initial height of the object), then fire the pumpkin straight upward (at an angle of 90∘) with an initial speed of 14 m/s . How long does it take for the pumpkin to hit the ground?
Physics
1 answer:
AlladinOne [14]3 years ago
6 0

Answer: It takes 2.85 seconds.

Explanation: according to the question, the kinematics equation for vertical motion is

y(t) = y_{0} + v_{0} .t - \frac{1}{2} .gt^{2}

y₀ is the initial postion and equals 0 because it is fired at ground level;

v₀ is the initial speed and eqauls 14m/s;

g is gravity and it is 9.8m/s²;

y(t) is the final position and equals 0 because it is when the pumpkin hits the ground;

Rewriting the equation, we have:

0 + 14t - \frac{1}{2}.9.8.t^{2} = 0

14t - 4.9t² = 0

t(14 - 4.9t) = 0

For this equation to be zero,

t = 0 or

14 - 4.9t = 0

- 4.9t = - 14

t = \frac{14}{4.9}

t = 2.86

It takes 2.86 seconds for the pumpkin to hit the ground.

You might be interested in
Impulse equals?<br> A) momentum x velocity<br> B) momentum x time<br> C) mass x velocity
mina [271]

Answer:

B

Explanation:

The impulse experienced by an object is the force•time.

7 0
3 years ago
Read 2 more answers
5) In the last part of step 7 of the procedure, you measured the resistance of the flashlight when it had no current passing thr
Andreyy89

Answer:

Following are the responses to this question:

Explanation:

The small current passes thru the capacitor of the strain gauge and the current is generated throughout the resistor. For the very first time,  in contrast to what we calculate, its resistance of the multimeter is quite high and therefore the small stream flowing through the bulb would have very little impact on the measure. Thus, as the current flows through the flashbulb, this same calculation is of excellent price, its material is heated and resistance varies with increase. Therefore, when the bulb will be on, sensitivity is greater.

6 0
3 years ago
A tray of electronic components contains 15 components, 4 of which are defective. If 4 components are selected, what is the poss
dlinn [17]

Answer:

a) 0.0007326

b) 0.03223

c) 0.2418

d) 0.2418

Explanation:

To find different probabilities for the selection of components among eleven good and four defective components, we will use the Combination.

a) C(4,4) = 1; C(15,4) = 1365

P = \frac{C(4,4)}{C(15,4)} = \frac{1}{1365} = 0.0007326

b) C(4,3) = 4; C(11,1) = 11

P = \frac{C(4,3)*C(11,1)}{C(15,4)} = \frac{4*11}{1365} = 0.03223

c) C(4,2) = 6; C(11,2) = 55

P = \frac{C(4,2)*C(11,2)}{C(15,4)} = \frac{6*55}{1365} = 0.2418

d) C(11,4) = 330

P = \frac{C(11,4)}{C(15,4)} = \frac{330}{1365} = 0.2418

8 0
3 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
4 years ago
What is the only function of the pulleys in the diagram?
tia_tia [17]

The only function of the pulleys in the diagram is to change the direction

of the force applied to raise the bricks.

<h3>What is a Pulley?</h3>

A pulley is a wheel which has a flexible rope on its rim and helps to

transmit energy and motion.

In the diagram given, we can see that the pulley is used to raise a mass of

block by three people. They pull the rope horizontally in order to raise the

block vertically. This means that it was used to change the direction of the

applied force.

Read more about Pulley here brainly.com/question/177456

5 0
3 years ago
Other questions:
  • What are three ways to speed up a<br> reaction?
    15·2 answers
  • A ball is dropped from an aircraft flying at an altitude of 8,848 meters assuming gravity is 9.8m/s what is the total amount of
    10·1 answer
  • To calculate how much rest energy an object contains, you multiply
    11·1 answer
  • Four charges are at the corners of a square centered at the origin as follows q at a a 2q at a a 3q at a a and 6q at a a A fifth
    13·1 answer
  • Each of four particles move along an x axis. Their coordinates (in meters) as functions of time(in seconds) are given byparticle
    6·2 answers
  • The μ-receptor (mu) a. plays a role in analgesia and the rewarding effects of morphine. b. overlaps with the κ-receptor in its d
    11·1 answer
  • How much current is drawn by a computer with a resistance of 42Ω that is connected across a potential difference of 220 V?
    6·2 answers
  • Given a force of 100 N and an acceleration of 5 m/s2, what is the mass
    12·2 answers
  • Acceleration deceleration all rules
    6·1 answer
  • 4. A lamp in a circuit has 4 Amps of current. If there is 32 12 of resistance
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!