Answer:
R = V / I
, R = V² / P, R = P / I²
Explanation:
For this exercise let's use ohm's law
V = I R
R = V / I
Electric power is defined by
P = V I
ohm's law
I = V / R
we substitute
P = V (V / R)
P = V² / R
R = V² / P
the third way of calculation
P = (i R) I
P = R I²
R = P / I²
Well, I do know that polarity affects the voltage.
Answer:
The distance from the entrance at which the boundary layers meet is 0.516m
The distance from the entrance at which the thermal boundary layers meet is 1.89m
Explanation:
For explanation, look at the attached file
Answer:
The correct answer is 'velocity'of liquid flowing out of an orifice is proportional to the square root of the 'height' of liquid above the center of the orifice.
Explanation:
Torricelli's theorem states that

where
is the velocity with which the fluid leaves orifice
is the head under which the flow occurs.
Thus we can compare the given options to arrive at the correct answer
Velocity is proportional to square root of head under which the flow occurs.
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N