Answer:
2 kg
Explanation:
Note: For the meter stick to be balanced,
Sum of clock wise moment must be equal to sum of anti clock wise moment
Wd = W'd' ................ Equation 1
Where W = weight of the rock, d = distance of the meter stick from the point of support, W' = weight of the that must be suspended for the meter stick to be balanced, d' = distance of the mass to the point of support.
make W' the subject of the equation
W' = Wd/d'............... Equation 2
Taking our moment about the support,
Given: W = mg = 1 ×9.8 = 9.8 N, d = 50 cm, d' = (75-50) = 25 cm
Substitute into equation 2
W' = 9.8(50)/25
W' = 19.6 N.
But,
m = W'/g
m = 19.6/9.8
m = 2 kg.
The answer is:
B)They are in the same group because they have similar chemical properties, but they are in different periods because they have very different atomic numbers.
The explanation:
The vertical columns on the periodic table are called groups or families because of their similar chemical behavior. All the members of a family of elements have the same number of valence electrons and similar chemical properties.
A period is a horizontal row of elements on the periodic table. For example, the elements sodium ( Na ) and magnesium ( Mg ) are both in period 3. The elements astatine ( At ) and radon ( Rn ) are both in period 6.
The amplitude of sound waves determines the volume of the sound. Not by the motion of sound, only pitch in that aspect. It is related to the square of the amplitude.
Answer:
Explanation:
Initial separation of plate = d
final separation = 2d
The capacitance of the capacitor will reduce from C to C/2 because
capacitance = ε A / d
d is distance between plates.
As the batteries are disconnected , charge on the capacitor becomes fixed .
Initial charge on the capacitor
= Capacitance x potential difference
Q = C ΔV
Final charge will remain unchanged
Final charge = C ΔV
Final capacitance = C/2
Final potential difference = charge / capacitance
= C ΔV / C/2
= 2 ΔV
Potential difference is doubled after the pates are further separated.
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy
