1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
9

A 91.5 kg football player running east at 3.73 m/s tackles a 63.5 kg player running east at 3.09 m/s. what is their velocity aft

erward? PLEASE HELP
Physics
1 answer:
PIT_PIT [208]3 years ago
7 0

Their velocity afterward is  v=3.467 m/s

Explanation:

Given:

Mass of the first football player= 91.5 kg

Initial velocity of the football player 3.73 m/s

Mass of second football player=63.56 kg

Initial velocity of the second football player=3.09 m/s

To find:

Final velocity of both players=?

Solution:

According to the law of conservation of momentum,

Initial momentum =final momentum

mathematically represented as  

m_1u_1+m_2u_2=m_1v_1+m_2v_2...........................(1)

where

u_1=intial velocity of the football player

u_2 = inital velocity of second football player

v_1=finall velocity of the  first football player

v_2=final velocity of second football player

after tackling , both the football players moves with the same velocity,

so v_1=v_2=v

Hence equation (1) becomes

m_1u_1+m_2u_2=(m_1+m_2)v

v=\frac{m_1u_1+m_2u_2}{(m_1+m_2)}

now substituting the values,

v=\frac{(91.5\times+3.73)+(63.5\times3.09)}{(91.5+63.5)}v=\frac{(341.29+196.210)}{155}

v=\frac{537.5}{155}

v=3.467 m/s

You might be interested in
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
3 years ago
How much money would be saved by turning off one 100.0-W lightbulb 3.0 h/day for 365 days if the
Pavlova-9 [17]

Answer:

the money that would be saved is $13.14.

Explanation:

Given;

power consumed by the light bulb, P = 100 W = 0.1 kW

time of running the bulb, t = 3 hours for 365 days = 1,095 hours

cost rate of power consumption, C = $0.12 per kWh

Energy consumed by the light bulb for the given days;

E = Pt

E = 0.1 kW  x 1,095 hr

E = 109.5 kWh

Cost of energy consumed = 109.5 kWh   x   $0.12 / kWh

                                            = $13.14

Therefore, the money that would be saved is $13.14.

3 0
2 years ago
The average diameter of one tennis ball in a package of three is 6.8 cm. Which of the following is the combined volume of all th
Crank

We want to find the combined volume of 3 tennis balls. We will get that the combined volume is 493.7 cm^3

First, remember that for a sphere of diameter D, the volume is:

V = \frac{4}{3}*3.14*(\frac{D}{2})^3

Where 3.14 is pi.

Here we know that the average diameter of a tennis ball is 6.8cm, then we can replace that in the above equation to find the volume (in average) of a single tennis ball:

V = \frac{4}{3}*3.14*(\frac{6.8cm}{2})^3 = 164.5 cm^3

Now, in 3 balls of tennis, the combined volume will be 3 times the above one, this is:

3*V = 3*164.5cm^3 = 493.7 cm^3

If you want to learn more about volumes, you can read:

brainly.com/question/10171109

4 0
2 years ago
12) Photosynthesis is a chemical reaction where carbon dioxide and water react to form glucose (C6H12O6) and oxygen gas. Which r
marusya05 [52]
6CO2 + 6H2O → C6H12O6 + 6O2
4 0
3 years ago
Read 2 more answers
A mass m = 1.1 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k
adell [148]

Answer:

a) = 10.22 rad/s

b) = 0.35 m

Explanation:

Given

Mass of the particle, m = 1.1 kg

Force constant of the spring, k = 115 N/m

Distance at which the mass is released, d = 0.35 m

According to the differential equation of s Simple Harmonic Motion,

ω² = k / m, where

ω = angular frequency in rad/s

k = force constant in N/m

m = mass in kg

So,

ω² = 115 / 1.1

ω² = 104.55

ω = √104.55

ω = 10.22 rad/s

If y(0) = -0.35 m and we want our A to be positive, then suffice to say,

The value of coefficient A in meters is 0.35 m

6 0
3 years ago
Other questions:
  • Force X has a magnitude of 1260 ​pounds, and Force Y has a magnitude of 1530 pounds. They act on a single point at an angle of 4
    12·1 answer
  • What is the different features between the bar magnet and the horseshoe magnet??
    5·1 answer
  • Taya served a volleyball with a mass of 2.1kg the ball leaves her hand with a speed of 30 m/s what type of energy does the ball
    14·1 answer
  • Which describes an object in projectile motion? Check all that apply.
    9·1 answer
  • A 60-V potential different is applied across a parallel combination of a 10-ohm and 20-ohm resistor. What is the current in the
    6·2 answers
  • What do the key results indicate?
    6·2 answers
  • A block with a mass of 3.7 kg slides with a speed of 2.2 m/s on a frictionless surface. The block runs into a stationary spring
    8·1 answer
  • A Describe and explain what
    12·2 answers
  • What is the longest wavelength of light that will emit electrons from a metal whose work function is 3.70 eV
    12·1 answer
  • What number on this diagram indicates the trend line?<br><br> A. 1<br> B. 2<br> C. 4<br> D. 7
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!