Answer:
Given that;
Jello there, see explanstion for step by step solving.
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
Explanation:
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
See attachment for more clearity
Answer:
1.176
Explanation:
When the bullets impact the mass they become embedded on it, it is a plastic collision, therefore momentum is conserved.
v2 * (M + mb) = v1 * mb
Where
v1: muzzle velocity of the bullet
M: mass of the bob
mb: mass of the bullet
v2: mass of the bob with the bullet after being hit
v2 = v1 * mb / (M + mb)
Upon being impacted the bob will acquire speed v2, this implies a kinetic energy. The bob will then move and raise a height h. Upon acheiving the maximum height it will have a speed of zero. At that point all kinetic energy will be converted into potential energy.
Ek = 1/2 (M + mb) * v2^2
Ep = (M + mb) * g * h
Ek = Ep
1/2 (M + mb) * v2^2 = (M + mb) * g * h
1/2 * (v1 * mb / (M + mb))^2 = g * h
1/2 * v1^2 * mb^2 / (M + mb)^2 = g * h
v1^2 = g *h * (M+ mb)^2 / (1/2 * mb^2)

The height h that it reaches is related to the length L of the pendulum arm and the angle it forms with the vertical.
h = L * (1 - cos(a))

For the 9 mm:

For the 0.44 caliber:

The ratio is 460 / 391 = 1.176
Answer:
The 1st one:Your natural ability
Answer:
Explanation:
Define the purpose of the survey.
Make every question count.
Keep it short and simple.
Ask direct questions.
Ask one question at a time.
Avoid leading and biased questions.