1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
9

A one-dimensional plane wall of thickness 2L=80 mm experiences uniform thermal generation of q= 1000 W/m^3 and is convectively c

ooled at x=±40 mm by an ambient fluid characterized byT infinity=20degreesC. If the steady-state temperature distribution within the wall is T(x) = a(L2-x2)+b where a=15oC/m2and b=40oC, what is the thermal conductivityof the wall? What is the value of the convection heat transfer coefficient?
Engineering
1 answer:
Eduardwww [97]3 years ago
7 0

Answer:

h=1.99998\ W/m^2.C

k=33.333\ W/m.C

Explanation:

Considering the one dimensional and steady state:

From Heat Conduction equation considering the above assumption:

\frac{\partial^2T}{\partial x^2}+\frac{\dot e_{gen}}{k}=0       Eq (1)

Where:

k is thermal Conductivity

\dot e_{gen} is uniform thermal generation

T(x) = a(L^2-x^2)+b

\frac{\partial\ T(x)}{\partial x}=\frac{\partial\ a(L^2-x^2)+b}{\partial x}=-2ax\\\frac{\partial^2\ T(x)}{\partial x^2}=\frac{\partial^2\ -2ax}{\partial x^2}=-2a

Putt in Eq (1):

-2a+\frac{\dot e_{gen}}{k}=0\\ k=\frac{\dot e_{gen}}{2a}\\ k=\frac{1000}{2*15}\\ k=33.333\ W/m.C

Energy balance is given by:

Q_{convection}=Q_{conduction}

h(T_L-T_{inf})=-k(\frac{dT}{dx}) _L     Eq  (2)

T(x) = a(L^2-x^2)+b

Putting x=L

T(L) = a(L^2-L^2)+b\\T(L)=b\\T(L)=40^oC

\frac{dT}{dx}=\frac{d(a(L^2-x^2)+b}{dx}=-2ax\\Put\ x\ =\ L\\\frac{dT}{dx}=-2aL\\(\frac{dT}{dx})_L=-2*15*0.04=-1.2

From Eq (2)

h=\frac{-k*-1.2}{(40-20)} \\h=\frac{-33.333*-1.2}{(40-20)}\\h=1.99998\ W/m^2.C

You might be interested in
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
max2010maxim [7]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

7 0
2 years ago
g A heat exchanger is designed to is to heat 2,500 kg/h of water from 15 to 80 °C by engine oil. The configuration of the heat e
sergey [27]

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

The attached file gave a detailed solution of the problem.

8 0
2 years ago
Bryan a project manager and his team have been assigned a new project. The team members have already started working on their as
Vedmedyk [2.9K]

Answer:

there teams management is good

4 0
3 years ago
Substances A and B have retention times of 16.63 and 17.63 min, respectively, on a 30 cm column. An unretained species passes th
Svet_ta [14]

Answer:

The time required to elute the two species is 53.3727 min

Explanation:

Given data:

tA = retention time of A=16.63 min

tB=retention time of B=17.63 min

WA=peak of A=1.11 min

WB=peak of B=1.21 min

The mathematical expression for the resolution is:

Re_{s} =\frac{2(t_{B}-t_{A})}{W_{A}+W_{B} } =\frac{2*(17.63-16.63)}{1.11+1.21} =0.8621

The mathematical expression for the time to elute the two species is:

\frac{t_{2}}{t_{1}} =(\frac{Re_{B} }{Re_{s} } )^{2}

Here

ReB = 1.5

t_{2} =t_{1} *(\frac{Re_{B} }{Re_{s} } )^{2} =17.63*(\frac{1.5}{0.8621} )^{2} =53.3727min

6 0
2 years ago
Помогите написать детектив​
Juliette [100K]

Answer:

Ладно

Explanation:

7 0
3 years ago
Other questions:
  • What is the difference between a refrigeration cycle and a heat pump cycle?
    9·1 answer
  • Select the right answer<br>​
    8·1 answer
  • For each topic, find the total number of blurts that were analyzed as being related to the topic. Order the result by topic id.
    6·1 answer
  • A wastewater treatment plant has two primary clarifiers, each 20m in diameter with a 2-m side-water depth. the effluent weirs ar
    8·1 answer
  • The beam is supported by a pin at A and a roller at B which has negligible weight and a radius of 15 mm. If the coefficient of s
    7·1 answer
  • Sarah and Raj take/takes me to a baseball game every year.
    11·1 answer
  • How can you drop two eggs the feweHow can you drop two eggs the fewest amount of times, without them breaking? ...st amount of t
    13·2 answers
  • Which type of engineer is needed in the following scenario?
    8·2 answers
  • Which option identifies the free resource Judi can use in the following scenario?
    7·1 answer
  • Integrated circuits typically are mounted on ________, which are then plugged into the system board.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!