1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
9

A one-dimensional plane wall of thickness 2L=80 mm experiences uniform thermal generation of q= 1000 W/m^3 and is convectively c

ooled at x=±40 mm by an ambient fluid characterized byT infinity=20degreesC. If the steady-state temperature distribution within the wall is T(x) = a(L2-x2)+b where a=15oC/m2and b=40oC, what is the thermal conductivityof the wall? What is the value of the convection heat transfer coefficient?
Engineering
1 answer:
Eduardwww [97]3 years ago
7 0

Answer:

h=1.99998\ W/m^2.C

k=33.333\ W/m.C

Explanation:

Considering the one dimensional and steady state:

From Heat Conduction equation considering the above assumption:

\frac{\partial^2T}{\partial x^2}+\frac{\dot e_{gen}}{k}=0       Eq (1)

Where:

k is thermal Conductivity

\dot e_{gen} is uniform thermal generation

T(x) = a(L^2-x^2)+b

\frac{\partial\ T(x)}{\partial x}=\frac{\partial\ a(L^2-x^2)+b}{\partial x}=-2ax\\\frac{\partial^2\ T(x)}{\partial x^2}=\frac{\partial^2\ -2ax}{\partial x^2}=-2a

Putt in Eq (1):

-2a+\frac{\dot e_{gen}}{k}=0\\ k=\frac{\dot e_{gen}}{2a}\\ k=\frac{1000}{2*15}\\ k=33.333\ W/m.C

Energy balance is given by:

Q_{convection}=Q_{conduction}

h(T_L-T_{inf})=-k(\frac{dT}{dx}) _L     Eq  (2)

T(x) = a(L^2-x^2)+b

Putting x=L

T(L) = a(L^2-L^2)+b\\T(L)=b\\T(L)=40^oC

\frac{dT}{dx}=\frac{d(a(L^2-x^2)+b}{dx}=-2ax\\Put\ x\ =\ L\\\frac{dT}{dx}=-2aL\\(\frac{dT}{dx})_L=-2*15*0.04=-1.2

From Eq (2)

h=\frac{-k*-1.2}{(40-20)} \\h=\frac{-33.333*-1.2}{(40-20)}\\h=1.99998\ W/m^2.C

You might be interested in
Compute the solution to x + 2x + 2x = 0 for Xo = 0 mm, vo = 1 mm/s and write down the closed-form expression for the response.
Nutka1998 [239]

Answer:

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1 ( damping condition )

closed-form expression for the response is attached below

Explanation:

Given :  x + 2x + 2x = 0   for Xo = 0 mm and Vo = 1 mm/s

computing a solution :

M = 1,

c = 2,

k = 2,

Wn = \sqrt{\frac{k}{m} }  = \sqrt{2}  

next we determine the damping condition using the damping formula

β = \frac{c}{\sqrt{km} } =  0.7071 ≈ 1

from the condition above it can be said that the damping condition indicates underdamping

attached below is the closed form expression for the response

6 0
3 years ago
with a digital system, if you have measured incorrectly and use too low of a kvp for adequate penetration, what do you need to d
Lubov Fominskaja [6]

The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.

<h3>How does kVp impact the exposure to digital receptors?</h3>

The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.

<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>

Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.

To know more about kVp visit:-

brainly.com/question/17095191

#SPJ4

5 0
1 year ago
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
3 years ago
Consider a W21x93. Determine the moment capacity of the beam. Assume the compression flange is not laterally braced and that the
OLga [1]

Answer:

The answer is "828.75"

Explanation:

Please find the correct question:

For W21x93 BEAM,

Z_x = 221.00 in^3 \\\\\to \frac{b_t}{2t_f} =4.53\\\\\to \frac{h}{t_w}=32.3

For A992 STREL,

F_y= 50\  ks

Check for complete section:

\to \frac{b_t}{2t_f} =4.53 < \frac{65}{\sqrt{f_y = 9.19}}\\\\\to \frac{h}{t_w} =32.3 < \frac{640}{\sqrt{f_y = 90.5}}

Design the strength of beam =\phi_b Z_x F_y\\\\

                                                =0.9 \times 221 \times 50\\\\=9945 \ in \ \ kips\\\\=\frac{9945}{12}\\\\= 828.75 \ft \ kips \\

8 0
3 years ago
In Lab 7, we worked through a program that displayed the homeless shelter occupancy over time. The same approach can be used for
Bezzdna [24]

Answer:

Explanation:

The python code to generate this is quite simple to run.

i hope you understand everything written here, you can as well try out other problems to understand better.

First to begin, we import the package;

Code:

import pandas as pd

import matplotlib.pyplot as plt

name = input('Enter name of the file: ')

op = input('Enter name of output file: ')

df = pd.read_csv(name)

df['Date'] = pd.to_datetime(df["Date"].apply(str))

plt.plot(df['Date'],df['Absent']/(df['Present']+df['Absent']+df['Released']),label="% Absent")

plt.legend(loc="upper right")

plt.xticks(rotation=20)

plt.savefig(op)

plt.show()

This should generate the data(plot) as seen in the uploaded screenshot.

thanks i hope this helps!!!

6 0
3 years ago
Other questions:
  • Air is contained in a vertical piston–cylinder assembly such that the piston is in static equilibrium. The atmosphere exerts a p
    9·1 answer
  • Which of the following is not an example of heat generation? a)- Exothermic chemical reaction in a solid b)- Endothermic Chemica
    15·1 answer
  • A 150 MVA, 24 kV, 123% three-phase synchronous generator supplies a large network. The network voltage is 27 kV. The phase angle
    5·1 answer
  • A homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time. Determine the average cost per k
    7·1 answer
  • The annual average of solar photovoltaic energy in Phoenix is 6,720
    8·1 answer
  • 8- Concentration polarization occurs on the surface of the.......
    15·1 answer
  • A wing generates a lift L when moving through sea-level air with a velocity U. How fast must the wing move through the air at an
    7·1 answer
  • What is the difference between a natural and artificial diamond ​
    6·2 answers
  • A coil having a resistance of 10 ohms and an inductance of 4 H is switched across a 20W dc source. Calculate (a) time required b
    9·1 answer
  • Steam locomotives with a 4-6-2 wheel arrangement were usually classified as what?.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!