Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
<em>To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). </em><em>The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). </em><em>Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.</em>
Answer:
D
Explanation:
The greater the mass, the greater the inertia, and vice versa.
Remark: This means that a more massive object has a greater tendency to resist a change in its state of rest or motion.
Explanation:
The electric field of an isolated charged parallel-plate capacitor is given by :
........(1)
Where
q is the electric charge
A is the area of cross section of parallel plate
It is clear from equation (1) that the electric field of a parallel plate capacitor is directly proportional to the charge on the plate and inversely proportional to the area of cross section of a plate.
So, the correct option is (E) i.e. "none of the above".
Answer:
mainline current
Explanation:
Current that flows from and back to the power supply in a parallel circuit. Fuse. A type of circuit protection device.
Answer:
a) Ws = 2.548 J
b) Wf = 1.153 J
c) v = 1.923 m / s
Explanation:
a) The work done by the spring force
Ws = ½ * k * x²
Ws = ½ * 260 N/m *0.14² m
Ws = 2.548J
b) The increase in thermal energy can by find using
Et = Wf
Wf = µ * m *g * x
Wf = 0.42 * 2.0 kg *9.8 m/s² * 0.14m
Wf = 1.153 J
c) The speed just as the block reaches can by fin using
EK = Ws + Et
Ek = ( 2.548 + 1.153 ) J = 3.7 J
Ek = ½ * m * v²
v² = 2* Ek / m
v = √[2 * 3.7 J / 2.0 kg]
v = 1.923 m / s