Answer:
2583.9 N/C
Explanation:
Parameters given:
Outer diameter = 14 cm
Outer radius, R = 7cm = 0.07m
Inner diameter = 7 cm
Inner radius, r = 3.5 cm = 0.035m
Charge of washer = 8 nC = 8 * 10^(-9)C
Distance from washer, z = 33 cm = 0.33m
The electric field due to a washer (hollow disk) is given as:
E = k * σ * 2π [ 1 - z/(√(z² + R²)]
Where σ = charge per unit area
σ = q/π(R² - r²)
σ = 8 * 10^(-9) /(π*(0.07 - 0.035)²)
σ = 2.077 * 10^(-6) C/m²
=> E = 9 * 10^9 * 2.077 * 10^(-6) * 2π * [1 - 0.33/(√(0.33² + 0.07²)]
E = 117.467 * 10^3 * (1 - 0.978)
E = 117.467 * 10^3 * 0.022
E = 2583.9 N/C
Answer:
B. It has a central nucleus composed of 29 protons and 35 neutrons,
surrounded by an electron cloud containing 29 electrons.
Explanation:
Protons and neutrons are the only subatomic particles with mass, and they are located in the nucleus. If this atom has an atomic number of 29 and is copper, it must have 29 protons (protons define which element is being observed). This means all remaining mass is from neutrons. 64-29 = 35.
Electrons have no mass and orbit the nucleus in the electron cloud. Since this copper atom is neutral (we are not told it has a charge), there must be an equal number of protons and electrons.
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K
Answer:
if somthing is warm or if somthing moves it usally has energy