To solve this problem we must resort to the Work Theorem, internal energy and Heat transfer. Summarized in the first law of thermodynamics.
Where,
Q = Heat
U = Internal Energy
By reference system and nomenclature we know that the work done ON the system is taken negative and the heat extracted is also considered negative, therefore
Work is done ON the system
Heat is extracted FROM the system
Therefore the value of the Work done on the system is -158.0J
Answer:
ΔL = L0 C ΔT
We need to find C the constant of expansivity
C = ΔL / (L0 ΔT)
C = .96 / (15.04 * 65) = 9.82 * 10^-4 / deg C
Because gravity accelerates all objects the same regardless of their mass
The mixing ratio is 6.
To find the answer, we have to know about the mixing ratio.
<h3>
What is mixing ratio?</h3>
- The mixing ratio must be calculated in a complex manner.
- A saturated vapor pressure (es) for values of air temperature and an actual vapor pressure (e) for values of dewpoint temperature must be determined in order to determine the mixing ratio.
- The air temperature and/or dewpoint temperature must first be converted to degrees Celsius (°C) before the vapor pressures can be calculated.
- The equation below can be used to determine the relative humidity (rh), as well as the actual mixing ratio and saturated mixing ratio,
where; w is the mixing ratio and w(s) is the saturation mixing ratio.
- In our question, it is given that,
- Thus, the mixing ratio will be,
Thus, we can conclude that, the mixing ratio is 6.
Learn more about mixing ratio here:
brainly.com/question/8791831
#SPJ4
Answer:
0.25m²
Explanation:
We know that the summation of forces in the vertical direction is zero
So
PA-mg=0
A=mg/p
So
Substituting
A= 75* 9.8/3*10^-3
=0.25m² which is the total shoe area